Exercise 44

Show by implicit differentiation that the tangent to the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

at the point $\left(x_{0}, y_{0}\right)$ is

$$
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1
$$

Solution

Start by differentiating both sides of the given equation with respect to x.

$$
\frac{d}{d x}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)=\frac{d}{d x}(1)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0
$$

Solve for $d y / d x$.

$$
\begin{aligned}
\frac{2 y}{b^{2}} \frac{d y}{d x} & =-\frac{2 x}{a^{2}} \\
\frac{d y}{d x} & =-\frac{b^{2}}{a^{2}} \frac{x}{y}
\end{aligned}
$$

The slope of the tangent line at the point $\left(x_{0}, y_{0}\right)$ is then

$$
m=-\frac{b^{2}}{a^{2}} \frac{x_{0}}{y_{0}} .
$$

Use the point-slope formula to obtain the equation of the tangent line.

$$
\begin{gathered}
y-y_{0}=m\left(x-x_{0}\right) \\
y-y_{0}=-\frac{b^{2}}{a^{2}} \frac{x_{0}}{y_{0}}\left(x-x_{0}\right) \\
y_{0} y-y_{0}^{2}=-\frac{b^{2}}{a^{2}} x_{0}\left(x-x_{0}\right) \\
\frac{y_{0} y}{b^{2}}-\frac{y_{0}^{2}}{b^{2}}=-\frac{1}{a^{2}} x_{0}\left(x-x_{0}\right) \\
\frac{y_{0} y}{b^{2}}-\frac{y_{0}^{2}}{b^{2}}=-\frac{x_{0} x}{a^{2}}+\frac{x_{0}^{2}}{a^{2}} \\
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}} \\
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1
\end{gathered}
$$

The right side is 1 because the point $\left(x_{0}, y_{0}\right)$ lies on the ellipse.

